Lie Groups with Applications to Machine Learning and Quantum Computing Course Syllabus

Brian Hepler

Contents

1	Introduction to Lie Groups	2
	1.1 Basic Notions	2
	1.2 Fundamental Examples	
	1.3 Lie Subgroups, Homogeneous Spaces, and Continuous Symmetries	2
2	Lie Algebras and the Exponential Map	3
	2.1 Lie Algebras	3
	2.2 Matrix Lie Algebras	3
	2.3 The Exponential Map	
	2.4 Baker-Campbell-Hausdorff Formula	3
3	Representation Theory of Lie Groups and Lie Algebras	4
	3.1 Representations	4
	3.2 Representation Theory of $SU(2)$	4
	3.3 Peter–Weyl Theorem	4
4	Lie Groups in Quantum Mechanics and Quantum Computing	5
	4.1 Quantum Mechanics	5
	4.2 Quantum Computing	5
5	Symmetry and Invariance in Machine Learning	6
	5.1 Why use Lie Groups in ML?	6
	5.2 Group Equivariant Convolutional Neural Networks	6
	5.3 Geometric Deep Learning Applications	6
6	Lie Groups and Equivariant Neural Networks	7
	6.1 Equivariant Networks	7
	6.2 Continuous Symmetries in Data	
	6.3 Physics-Informed Neural Networks	
7	Case Studies, Recent Research, and Future Directions	8

Course Material

- Hall, Brian C. Lie Groups, Lie Algebras, and Representations.
- Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information.
- Bronstein, Michael M. et al, "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges." arXiv preprint arXiv:2104.13478.
- Cohen, Taco, and Max Welling. "Group Equivariant Convolutional Networks." *Proceedings of the 33rd International Conference on Machine Learning* (ICML), 2016.

1 Introduction to Lie Groups

1.1 Basic Notions

- Review of Groups and Smooth Manifolds. Topological Groups.
 - Basic definitions and examples
 - Importance in mathematics and physics
- Definition of Lie Groups
 - Groups that are also smooth manifolds
 - Smooth group operations

1.2 Fundamental Examples

- Real Matrix Groups
 - General Linear Group $GL(n,\mathbb{R})$. Open subset of \mathbb{R}^{n^2}
 - Special Linear Group $SL(n,\mathbb{R})$. Determinant 1 condition
 - Orthogonal Group O(n). Preserves Euclidean inner product, compact but possibly disconnected
 - Special Orthogonal Group SO(n). Connected component of O(n), represents rotations of Euclidean space
- Complex Matrix Groups
 - Unitary Groups U(n). Preserves Hermitian inner product
 - Special Unitary Group SU(n). Important for QM, simply connected

1.3 Lie Subgroups, Homogeneous Spaces, and Continuous Symmetries

- Lie Subgroups
 - Embedded subgroups, regular subgroups, closed subgroups
 - Examples: torus in SU(n) (diagonal matrices w/ unit complex entries), $SO(n) \subset SU(n)$ (real rotations inside complex rotations), Parabolic subgroups, maximal tori
- Homogeneous Spaces
 - manifolds of the form M = G/H, where $H \subset G$ is closed subgroup and G is Lie
 - Examples: spheres, projective spaces, Grassmannians, flag manifolds
- Continuous Symmetries
 - Noether's theorem (first pass): every continuous symmetry corresponds to a conserved quantity
 - Examples: translation (momentum conservation), rotation (angular momentum conservation),
 phase transformation (charge conservation)

Reference

Hall, Chapter 1.

2 Lie Algebras and the Exponential Map

2.1 Lie Algebras

- Tangent space at the identity, left-invariant vector fields, derivations of smooth functions
- Lie bracket, main properties (anti-symmetric, Jacobi identity)
- Structure constants

2.2 Matrix Lie Algebras

- $\mathfrak{gl}(n,\mathbb{R})$: all $n \times n$ matrices
- $\mathfrak{sl}(n,\mathbb{R})$: trace zero matrices
- $\mathfrak{so}(n)$: skew-symmetric matrices
- $\mathfrak{u}(n)$: skew-Hermitian matrices

2.3 The Exponential Map

- Matrix Exponential
 - Power series definition
 - Convergence properties, computational methods
- One-Parameter Subgroups
 - of the form $\exp(tX)$ for $t \in \mathbb{R}$
 - geometric interpretation

2.4 Baker-Campbell-Hausdorff Formula

- Theorem statement. How do you solve for Z in the equation $e^X e^Y = e^Z$?
- First few terms, $Z = X + Y + \frac{1}{2}[X, Y] + \cdots$
- Applications

Reference

Hall, Chapters 2-3.

3 Representation Theory of Lie Groups and Lie Algebras

3.1 Representations

- Group Representations: homomorphisms $\rho: G \to GL(V)$
 - -V is vector space (usually complex)
 - ρ preserves the group operation
- Lie Algebra Representations: linear maps $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$
 - $-\varphi$ preserves the Lie bracket
 - Connected to group representation via exponential map
 - Derived representations

3.2 Representation Theory of SU(2)

- Fundamental representation $(2 \times 2 \text{ matrices})$
- Connection to angular momentum
- Pauli matrices as generators
- Brief discussion of weights

3.3 Peter-Weyl Theorem

- Motivation: generalizing Fourier series concept to more general compact groups than S^1
- Takeaway: Complete reducibility of f.d. unitary representations of compact groups
- Applications to quantum mechanics

Reference

Hall, Chapters 4-5.

4 Lie Groups in Quantum Mechanics and Quantum Computing

4.1 Quantum Mechanics

- Symmetry in Quantum Mechanics
 - Conservation laws to focus on: charge, spin, color
 - Noether's theorem, revisited
- Unitary Groups in Quantum Systems
 - -U(1) and phase transformations.
 - * Represents conservation of charge
 - * Example: $\psi \to e^{i\theta} \psi$ where $\theta \in \mathbb{R}$
 - $\ast\,$ Generator: charge operator Q
 - -SU(2) and spin systems.
 - * Represents rotational symmetry for spin- $\frac{1}{2}$ particles
 - * Generated by Pauli matrices
 - * Example: rotation of spin state $\left|\uparrow\right\rangle$ to $\alpha\left|\uparrow\right\rangle+\beta\left|\downarrow\right\rangle$
 - -SU(3): Strong interactions and Quantum Chromodynamics (QCD)
 - * Represents quark flavor symmetries
 - * Important in particle physics
 - * Eightfold Way (Gell-Mann matrices)

4.2 Quantum Computing

- Quantum Gates as Lie Group Elements
 - Single-Qubit Operations. All single-qubit gates are elements of SU(2) up to global phase. Common gates:

Pauli-X =
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in SU(2)$$
 (1)

$$\operatorname{Hadamard} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \in SU(2) \tag{2}$$

- Multi-Qubit Operations
 - * n-qubit gates live in $SU(2^n)$
 - * CNOT gate as an element of SU(4)
 - * Entangling operations require non-local Lie group elements
- Lie Algebras in Quantum Computing
 - Quantum control through Hamiltonian evolution
 - Time evolution operator: $U(t) = \exp(-iHt/\hbar)$
 - H is element of the Lie algebra $\mathfrak{u}(n)$
 - Control problem: reaching target unitary through available Hamiltonians

Reference

Nielsen-Chuang, Chapters 1.3 and Chapter 7 (on quantum gates).

5 Symmetry and Invariance in Machine Learning

5.1 Why use Lie Groups in ML?

- Role of Symmetry in Data and Models
 - Images (rotations, translations, scaling)
 - Point clouds (rigid transformations)
 - Molecular structures (rotations, permutations)
- Benefits
 - Reduce sample complexity
 - Better generalization
 - Physics-informed models

5.2 Group Equivariant Convolutional Neural Networks

- Convolutional Neural Networks
 - Translation invariance
 - Extension to other symmetries
- Group Convolutional Neural Networks
 - Incorporating rotations and reflections
 - Mathematical formulation

5.3 Geometric Deep Learning Applications

- Molecular modeling
- Point cloud processing
- Robotic manipulation and computer vision

Reference

- Bronstein, Michael M., et al. "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges." arXiv preprint arXiv:2104.13478.
- Cohen, Taco, and Max Welling. "Group Equivariant Convolutional Networks." *Proceedings of the* 33rd International Conference on Machine Learning (ICML), 2016.

6 Lie Groups and Equivariant Neural Networks

6.1 Equivariant Networks

- Mathematical Foundations
 - Lie groups acting on input and feature spaces
 - Equivariant maps and convolution
- Designing Neural Architectures with Lie Group Symmetries
 - Implementation strategies
 - Challenges and solutions

6.2 Continuous Symmetries in Data

- Applications to 3D data and point clouds
- Spherical CNNs and other specialized architectures

6.3 Physics-Informed Neural Networks

- Embedding physical laws into models
- Leveraging symmetries for better predictions

Reference

- Bronstein, Michael M., et al. "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges." arXiv preprint arXiv:2104.13478.
- Cohen, Taco, and Max Welling. "Group Equivariant Convolutional Networks." *Proceedings of the* 33rd International Conference on Machine Learning (ICML), 2016.

7 Case Studies, Recent Research, and Future Directions

Topics

- Review of Key Concepts
 - Interconnections between Lie groups, ML, and QC
 - Recap of important results and theorems
- Case Studies
 - Recent papers applying Lie groups to ML and QC
 - Detailed analysis and discussion
- Open Problems and Research Directions
 - Potential areas for innovation
 - Interdisciplinary applications
- \bullet Discussion and Q&A
 - Addressing student questions
 - Encouraging further exploration

Fun Applications

Integrating Lie groups in cutting-edge ML architectures, advances in quantum hardware and software leveraging Lie theory.