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1 Introduction to Lie Groups

1.1 Basic Notions

• Review of Groups and Smooth Manifolds. Topological Groups.

– Basic definitions and examples

– Importance in mathematics and physics

• Definition of Lie Groups

– Groups that are also smooth manifolds

– Smooth group operations

1.2 Fundamental Examples

• Real Matrix Groups

– General Linear Group GL(n,R). Open subset of Rn2

– Special Linear Group SL(n,R). Determinant 1 condition

– Orthogonal Group O(n). Preserves Euclidean inner product, compact but possibly discon-
nected

– Special Orthogonal Group SO(n). Connected component of O(n), represents rotations of
Euclidean space

• Complex Matrix Groups

– Unitary Groups U(n). Preserves Hermitian inner product

– Special Unitary Group SU(n). Important for QM, simply connected

1.3 Lie Subgroups, Homogeneous Spaces, and Continuous Symmetries

• Lie Subgroups

– Embedded subgroups, regular subgroups, closed subgroups

– Examples: torus in SU(n) (diagonal matrices w/ unit complex entries), SO(n) ⊂ SU(n) (real
rotations inside complex rotations), Parabolic subgroups, maximal tori

• Homogeneous Spaces

– manifolds of the form M = G/H, where H ⊂ G is closed subgroup and G is Lie

– Examples: spheres, projective spaces, Grassmannians, flag manifolds

• Continuous Symmetries

– Noether’s theorem (first pass): every continuous symmetry corresponds to a conserved quan-
tity

– Examples: translation (momentum conservation), rotation (angular momentum conservation),
phase transformation (charge conservation)

Reference

Hall, Chapter 1.
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2 Lie Algebras and the Exponential Map

2.1 Lie Algebras

• Tangent space at the identity, left-invariant vector fields, derivations of smooth functions

• Lie bracket, main properties (anti-symmetric, Jacobi identity)

• Structure constants

2.2 Matrix Lie Algebras

• gl(n,R): all n× n matrices

• sl(n,R): trace zero matrices

• so(n): skew-symmetric matrices

• u(n): skew-Hermitian matrices

2.3 The Exponential Map

• Matrix Exponential

– Power series definition

– Convergence properties, computational methods

• One-Parameter Subgroups

– of the form exp(tX) for t ∈ R
– geometric interpretation

2.4 Baker-Campbell-Hausdorff Formula

• Theorem statement. How do you solve for Z in the equation eXeY = eZ?

• First few terms, Z = X + Y + 1
2 [X,Y ] + · · ·

• Applications

Reference

Hall, Chapters 2-3.
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3 Representation Theory of Lie Groups and Lie Algebras

3.1 Representations

• Group Representations: homomorphisms ρ : G→ GL(V )

– V is vector space (usually complex)

– ρ preserves the group operation

• Lie Algebra Representations: linear maps ϕ : g→ gl(V )

– ϕ preserves the Lie bracket

– Connected to group representation via exponential map

– Derived representations

3.2 Representation Theory of SU(2)

• Fundamental representation (2× 2 matrices)

• Connection to angular momentum

• Pauli matrices as generators

• Brief discussion of weights

3.3 Peter–Weyl Theorem

• Motivation: generalizing Fourier series concept to more general compact groups than S1

• Takeaway: Complete reducibility of f.d. unitary representations of compact groups

• Applications to quantum mechanics

Reference

Hall, Chapters 4-5.
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4 Lie Groups in Quantum Mechanics and Quantum Computing

4.1 Quantum Mechanics

• Symmetry in Quantum Mechanics

– Conservation laws to focus on: charge, spin, color

– Noether’s theorem, revisited

• Unitary Groups in Quantum Systems

– U(1) and phase transformations.

∗ Represents conservation of charge

∗ Example: ψ → eiθψ where θ ∈ R
∗ Generator: charge operator Q

– SU(2) and spin systems.

∗ Represents rotational symmetry for spin- 12 particles

∗ Generated by Pauli matrices

∗ Example: rotation of spin state |↑〉 to α |↑〉+ β |↓〉
– SU(3): Strong interactions and Quantum Chromodynamics (QCD)

∗ Represents quark flavor symmetries

∗ Important in particle physics

∗ Eightfold Way (Gell-Mann matrices)

4.2 Quantum Computing

• Quantum Gates as Lie Group Elements

– Single-Qubit Operations. All single-qubit gates are elements of SU(2) up to global phase.
Common gates:

Pauli-X =

(
0 1
1 0

)
∈ SU(2) (1)

Hadamard =
1√
2

(
1 1
1 −1

)
∈ SU(2) (2)

– Multi-Qubit Operations

∗ n-qubit gates live in SU(2n)

∗ CNOT gate as an element of SU(4)

∗ Entangling operations require non-local Lie group elements

• Lie Algebras in Quantum Computing

– Quantum control through Hamiltonian evolution

– Time evolution operator: U(t) = exp(−iHt/~)

– H is element of the Lie algebra u(n)

– Control problem: reaching target unitary through available Hamiltonians

Reference

Nielsen-Chuang, Chapters 1.3 and Chapter 7 (on quantum gates).
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5 Symmetry and Invariance in Machine Learning

5.1 Why use Lie Groups in ML?

• Role of Symmetry in Data and Models

– Images (rotations, translations, scaling)

– Point clouds (rigid transformations)

– Molecular structures (rotations, permutations)

• Benefits

– Reduce sample complexity

– Better generalization

– Physics-informed models

5.2 Group Equivariant Convolutional Neural Networks

• Convolutional Neural Networks

– Translation invariance

– Extension to other symmetries

• Group Convolutional Neural Networks

– Incorporating rotations and reflections

– Mathematical formulation

5.3 Geometric Deep Learning Applications

• Molecular modeling

• Point cloud processing

• Robotic manipulation and computer vision

Reference

• Bronstein, Michael M., et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges.” arXiv preprint arXiv:2104.13478.

• Cohen, Taco, and Max Welling. “Group Equivariant Convolutional Networks.” Proceedings of the
33rd International Conference on Machine Learning (ICML), 2016.
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6 Lie Groups and Equivariant Neural Networks

6.1 Equivariant Networks

• Mathematical Foundations

– Lie groups acting on input and feature spaces

– Equivariant maps and convolution

• Designing Neural Architectures with Lie Group Symmetries

– Implementation strategies

– Challenges and solutions

6.2 Continuous Symmetries in Data

• Applications to 3D data and point clouds

• Spherical CNNs and other specialized architectures

6.3 Physics-Informed Neural Networks

• Embedding physical laws into models

• Leveraging symmetries for better predictions

Reference

• Bronstein, Michael M., et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges.” arXiv preprint arXiv:2104.13478.

• Cohen, Taco, and Max Welling. “Group Equivariant Convolutional Networks.” Proceedings of the
33rd International Conference on Machine Learning (ICML), 2016.
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7 Case Studies, Recent Research, and Future Directions

Topics

• Review of Key Concepts

– Interconnections between Lie groups, ML, and QC

– Recap of important results and theorems

• Case Studies

– Recent papers applying Lie groups to ML and QC

– Detailed analysis and discussion

• Open Problems and Research Directions

– Potential areas for innovation

– Interdisciplinary applications

• Discussion and Q&A

– Addressing student questions

– Encouraging further exploration

Fun Applications

Integrating Lie groups in cutting-edge ML architectures, advances in quantum hardware and software
leveraging Lie theory.
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