
QFA REAL ANALYSIS
MODULE 2 SYLLABUS

1. Real-Valued Functions: IVT, EVT, and Modes of
Convergence

• State and prove the Intermediate Value Theorem (IVT), giving
an example and a diagram.

• Use the IVT to prove the Extreme Value Theorem (EVT).
• Apply the EVT to give an alternative proof that uniformly

continuous functions on bounded sets have bounded image.
• Define pointwise and uniform convergence for sequences of real-

valued functions, and show that uniform convergence implies
pointwise convergent, however the converse does not hold.

• Prove that uniform limits of sequences of continuous functions
are continuous.

• State, prove, and demonstrate Dini’s Theorem, combining point-
wise monotonicity and pointwise convergence to obtain uniform
convergence.

• Give the Weierstrass M-Test for convergence of series of func-
tions.

• Briefly introduce Lp convergence of sequences of functions.

2. The Derivative

• Define differentiability, give examples, and show that although
differentiablility implies continuity, non-differentiable functions
may still be continuous.

• State and prove the rules for differentiation of sums, scalar
multiples, and products.

• Prove the Chain Rule for differentiating compositions of func-
tions.

• State and prove Rolle’s Theorem, with examples.
• Derive the Mean Value Theorem (MVT) from Rolle’s Theorem

and verify with examples.
• State L’Hôpital’s Rule, proving the case for the 0/0 indetermi-

nate forms. Give a simple example.
• State Taylor’s Theorem, define Taylor polynomials, and examine

the accuracy of such approximations for a special case.



• State and prove the Inverse Function Theorem for local inverta-
bility and differentiability of the inverse, with a sketch proof.

• Show that uniform convergence of derivatives implies differen-
tiability of the limit function, with an example.

• Introduce the Newton-Raphson Method for root-finding, giving
a demonstration.

3. The Integral

• Define partitions of an interval, in order to define lower and
upper Darboux sums L(f, P ) and U(f, P ).

• Define Riemann integrability via Darboux sums as equality of
sup L(f, P ) and inf U(f, P ).

• Prove that continuous functions on compact intervals are inte-
grable. Discuss counterexamples of integrable but discontinuous
functions.

• State and prove basic properties of the integral, namely linearity,
additivity over subintervals, inequality preservation, and the
triangle inequality.

• State and prove the Mean Value Theorem for Integrals.
• State and prove the Fundamental Theorem of Calculus (FTC),

both Part I and Part II. Proof sketches use the Mean Value
Theorem for Integrals.

• Introduce improper integrals as integrals with either unbounded
domains or asymptotic integrands. Provide some convergence
criteria.

• Demonstrate a few simple examples of improper integrals.
• Prove that uniform convergence of integrable functions allows

interchange of limit and integral.
• Give counterexamples to show that pointwise convergence is

insufficient to interchange limits and integrals.

4. Abstraction to Metric Spaces

• Define metric spaces and provide key examples (Euclidean metric,
discrete metric, supremum norm metric).

• Work through an example showing that the supremum metric
d∞ on C([a, b]) is indeed a metric.

• Define norms, and show that every norm induces a metric. Give
examples of metrics derived from norms and show that the
discrete metric is not norm-induced.

• Redefine several key topological definitions that we already knew
for R, in the more abstract setting of metric spaces.



• Show that the Heine–Borel theorem fails in general metric spaces,
with counterexample using the discrete metric.

• Define isometries and contractions. Provide examples in Eu-
clidean space and C([0, 1]).

• State and give a sketch proof that every metric space has a
canonical completion, defined as the closure of a certain isometric
image of the original space.

• Prove the Contraction Mapping Theorem (aka. Banach Fixed
Point Theorem).

• Define Lipschitz maps and show that Lipschitz continuity implies
uniform continuity.

• Apply the Contraction Mapping Theorem to prove the Pi-
card–Lindelöf Theorem, which establishes local existence and
uniqueness of solutions to initial value problems in ODE theory.

5. The Stone-Weierstrass Theorem

• State the Weierstrass Approximation Theorem: polynomials
are dense in C([a, b]). Detail that Bernstein polynomials can
always be used as arbitrarily close approximations of continuous
functions, giving a constructivist method to prove the Theorem.

• Define algebras of functions, subalgebras, and the concept of
separating points. Show that C(K) is an algebra when K ⊆ R
is compact, and that the space of polynomials separate points.

• Review topological preliminaries needed for Stone–Weierstrass,
including the open cover definition of compactness and the
preimages definition of continuity.

• State and prove the Stone–Weierstrass Theorem for compact
K ⊆ R: if a subalgebra of C(K) contains constants and separates
points, then its closure is C(K).

• Apply Stone–Weierstrass to show that polynomials are dense in
C([a, b]), recovering the Weierstrass theorem as a special case.

• Define trigonometric polynomials and show that they form a
subalgebra of C2π(R) containing constants.

• Handle periodic domains by identifying Cper[0, 2π] with C(T),
where T = R/2πZ is the circle (a compact Hausdorff space).

• Prove that trigonometric polynomials separate points in [0, 2π).
Apply Stone–Weierstrass to deduce density of trigonometric
polynomials in Cper[0, 2π].

• Introduce Fourier series as a constructive method to approximate
periodic functions by trigonometric polynomials. Define Fourier
coefficients, and write down the Fourier expansion.


